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Abstract. We describe the application of the reverse Monte Carlo simulation tech- 
nique to the analysis of EXAFS data. This technique generates a series of three di- 
mensional particle configurations which are consistent with the experimental EXAFS 
spectrum. No input information other than the density and the chemical composition 
of the sample is required. We present initial results for crystalline and amorphous 
silicon and preliminary results for silver bromide. Since the method works directly 
from an experimental spectrum it promises to be extremely powerful in modelling 
the structures of amorphous materials. 

1. Introduction 

During the past ten or fifteen years the use of the technique of extended x-ray absorp- 
tion fine structure (EXAFS) has become widespread in the determination of the local 
atomic environment in amorphous materials. The microscopic origin of EXAFS is now 
very well understood and detailed theories, which give good agreeement with experi- 
ment, are available in the literature and data  analysis packages. These theories show 
that ,  by comparing a calculated EXAFS spectrum with experiment, detailed informa- 
tion may be obtained on the local atomic environment of the atom which absorbed 
the x-ray photon. The range of the technique is about 5 A. The theory of EXAFS 
and the information that  can be obtained using it have been reviewed by Hayes and 
Boyce (1982). The theory has recently been considered in detail by Gurman (1990) 
and surveys of the applications may be found in the book edited by Koningsberger 
and Prins (1988). 

The usual aim of EXAFS studies of amorphous materials is to determine the extent 
and nature of the local structural order. Thus we seek information on the number, type 
and distance of the near-neighbours and on the variations in bond lengths and angles 
implicit in the lack of long range order. In determining such parameters via an analysis 
of the experimental data  we invariably need to  make some assumptions. One of the 
commonest in EXAFS analysis is that  the peaks in the radial distribution function are 
Gaussian in shape. Such assumptions limit the applicability of the technique and can 
lead to error. 

Neutron diffraction has also been extensively and very successfully used t o  obtain 
structural information on amorphous materials. Diffraction experiments give, after 
some small corrections, the structure factor A(&) .  This may be Fourier transformed, 
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if the Q range of the experiment is sufficiently large, to  yield the radial distribution 
function g(r ) .  By use of the technique of isotopic substitution we may, in favourable 
cases, obtain partial radial distribution functions g (r) for multicomponent systems 
from which coordination numbers and interatomic distances may be derived. As is the 
case in EXAFS studies, extraction of the structural parameters from the experimental 
data  involves making certain assumptions, which can lead to  difficulties and possibly 
to error. 

Recently one of us described the application of a new method of structural mod- 
elling] reverse Monte Carlo (RMC) simulation, to the analysis of neutron diffraction 
data (McGreevy and Pusztai 1988) and to the combination of neutron and x-ray 
diffraction data  for amorphous materials (Keen and McGreevy 1990). The RMC 
method produces a three-dimensional model of the structure by fitting to  either g(r)  
or A(&).  One of its advantages is that it makes very few assumptions about the 
structure of the samples; essentially only the density and chemical composition are 
required. In this paper we describe the application of this technique to  the ana.lysis 
of EXAFS data.  

?P 

2. Conventional EXAFS analysis 

EXAFS arises from the scattering of the photoelectron emitted on absorption of an x- 
ray photon. The scattering is off atoms surrounding the absorbing atom. To separate 
the scattering and absorption processes we write the photon absorption cross section 
U(  E )  for an atom in a solid as 

where E is the x-ray photon energy. uo(E) is the absorption cross section for a 
free atom and is essentially featureless except for the threshold. (Note that both 
go and U refer to  the contribution of a single edge to  the absorption.) x(E), which 
is defined by equation (I), is the EXAFS function and represents the modulation in 
the photoabsorption rate due to  scattering processes. The modulation arises from 
interference between the outgoing part of the photoelectron wavefunction and that 
small part of the wave which is scattered back from near-neighbour atoms. This 
interference process gives the oscillation in U with increasing photon energy which is 
known as EXAFS. 

EXAFS theories concentrate on the calculation of x (E) .  This is usually written as 
x(k) with k the photoelectron wavevector, since this is the parameter most directly 
related to  the interference process. It is, of course, simply related to  the photon energy. 
For the purposes of explanation we shall use the simplest of the theories of EXAFS, 
the approximate plane-wave theory, even though in practice we use the exact fast 
curved-wave theory. In the plane-wave approximation the EXAFS function x(k) due 
to a single scattering atom at  a fixed distance r from the central atom may be written 
as 

for K edge absorption. In this expression f (k l  T )  is the electron backscattering factor 
for the atom a t  T ,  this being a complex number of amplitude ( f (k ,T) I  and phase 4. 
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f ( k , ~ )  varies both with k and the atomic number of the scattering atom. 6, is the 
phaseshift introduced by the passage of the photoelectron through the potential of the 
absorbing atom: for a K edge this is the 1 = 1 phaseshift (1s + p transition). X is the 
elastic mean free path of the photoelectron; only elastically scattered electrons can 
interfere and so contribute to  the EXAFS. A ( k )  is an amplitude factor which allows 
for processes which contribute to  photoabsorption but not to  EXAFS, such as multi- 
electron excitations. In practice A ( k )  is taken to  be energy independent. 

The measured EXAFS signal will be a sum of contributions from all scattering and 
central atoms. The definition of the partial radial distribution function gap(r)  allows 
us to  write this as 

since we measure the EXAFS on the absorption edge of an atom of known chemical 
type CY. 

The simplest method of analysing EXAFS data  is to Fourier transform it.  If we 
transform with respect to  2kr ,  equation (3) shows that the result will be a weighted 
sum of the gaP(r )  with the peaks distorted and shifted by the k dependence of I f P ( k ,  .)I 
and (26, + gP).  Further distortions will be introduced by the finite data  range. A 
better method is to  transform kxa(k)/lfP(k, .)I with respect to  (2kR+26, + I l P )  with 
p chosen to  be the dominant atom, usually the nearest-neighbour type, and using 
calculated scattering data,  but the results are still not very satisfactory. 

Because of the unsatisfactory results given by a Fourier transform most EXAFS 
analyses are done by fitting ~ ( k )  itself, using calculated electron scattering data  and 
one of the more accurate theories (Gurman 1990). In order to  do this we need to  
make assumptions about the shape of g a p ( r ) .  By far the commonest assumption is 
that  g a p ( r )  may be represented as a sum of Gaussian peaks. With this assumption 
we may perform the integral in equation (3) to obtain what is usually considered to  
be the standard expression for the EXAFS function 

in which j is a peak, or 'shell' index. A shell j consists of Nj atoms at  a mean distance 
Rj from the absorbing atom and with mean square deviation U?. 

Even if we use one of the exact curved-wave EXAFS theories we still use the Gaus- 
sian form for g a p ( r ) .  Thus, if we write the contribution to  the EXAFS of a single 
scattering atom a t  a fixed distance r as x l (  k, r )  then we can rewrite equations (3) and 
( 4 )  as 

= Nje-2u:kzXl(k, R j ) .  
j 

Once a form for x l ( k ,  r )  has been decided on we fit the spectrum shell by shell using 
calculated scattering data.  Non-Gaussian peaks may be approximately dealt with by 
representing them as a sum of Gaussian sub-peaks (Greaves e t  a1 1988). Almost all 
of the standard EXAFS data  analysis packages are based on equation (6); the SERC 
Daresbury package EXCURV88, which uses curved-wave theory for xl(k, r )  is perhaps 
the best known and most widely used. 
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3. RMC analysis of EXAFS 

The assumption of Gaussian peak shapes in the standard E X A F S  analysis techniques 
is a possible source of error. It is clear, especially in the case of asymmetric peaks 
that are modelled by a set of Gaussian sub-peaks, that  the resulting arrangement of 
coordination shells may be physically unrealistic or even impossible. In order to  avoid 
making this assumption, and to  generate coordination shells that  must be physically 
possible, we have adapted the RMC method (McGreevy and Pusztai 1988) to  the 
analysis of E X A F S  data. This technique generates a three-dimensional model of the 
structure that  is sufficiently large to  give an accurate calculated x ( k )  which can be 
compared with experiment. 

The RMC algorithm is very simple. In summary: 

1. We start  with an initial configuration. This is a three-dimensional array of N points, 
representing atomic coordinates, in a cube of side L .  The array may be generated at  
random, i t  may be a lattice, or it may be a set of coordinates generated in another 
simulation. The only constraint is that i t  must have the same chemical composition 
and mass density as the experimental sample. 

2 .  Normal periodic boundary conditions are applied, i.e. the cube is surrounded by 
images of itself, and the radial distribution function gs(7*) is calculated. 
3. A new configuration is generated by random motion of one particle (point). The 
new radial distribution function g/s(r) is then calculated. 

4. From the simulated radial distribution functions gs ( r )  and g&(r )  EXAFS functions 
x s ( k )  and xb(k) are calculated using equation (5). These two functions are compared 
with the experimental spectrum from the system which is being modelled. We use 
the standard form of comparison of EXAFS spectra, with a k-weighted spectrum and 
normalising to  the amplitude of the experimental spectrum 

I a 

where ai is the estimated squared fractional error on the experimental spectrum. 
For simplicity we take this to  be independent of k ,  as is usually the case for EXAFS 
spectra. The 6 weighting (usually with n = 3) is used to give each point in the 
spectrum approximately equal amplitude. We calculate F I  and FI', the fit indices 
for the two calculated spectra x ( k )  and ~ ' ( k ) .  
5. If FI < FI'  then the new configuration is accepted. If F I  > FI' then the new 
configuration is accepted with probability exp[-(FI - FI')]. 
6. If the new configuration is accepted then it becomes the starting configuration, 
otherwise the old configuration is retained. We then repeat from step 3. 
7. The process is repeated until FI converges, i.e. until we reach equilibrium. If the 
simulated spectrum is in agreement with the experiment then FI will have a va.lue of 
order unity. If this is the case a t  convergence we continue, saving approximately one 
accepted configuration in N .  These are deemed to  be statistically independent. The 
x ( k )  calculated from each of these accepted configurations agrees with experiment to  
within a known error. Each configuration is a valid model of the system and can be 
used to  determine structural parameters. 
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4. Calculation details 

When we begin the simulation process it is necessary to  calculate gs(r)  in the normal 
way, using the $ N ( N  - 1) interparticle distances. However, between each step, it 
is only necessary to  calculate the change in gs(r)  due to the movement of a single 
particle. This involves N interparticle distances. By doing this we save a considerable 
amount of computer time and so can make N large; we use 1000 atoms in the basic 
cube of side L.  This also means that we can calculate gs ( r )  out to  a fairly large 
distance without running into problems with the periodic boundary conditions. 

gE(r)  is zero below a certain minimum value of T ,  yo, since particles in the real 
system can only approach to within a closest distance determined by the atomic radii. 
We can therefore automatically reject a new configuration a t  step 3, before calculating 
g&(r) ,  if the moved particle goes within ro of any other particle. In compounds we 
define an for each partial radial distribution function; i t  is usually set a t  SO-SO% 
of the distance of the first peak in t,he partial radial distribution function. 

In a conventional Monte Carlo simulation the maximum distance that  a particle is 
moved between two configurations is chosen in order to make the ratio of accepted and 
rejected configurations take a value such as 0.5. In the RMC simulation this has been 
found to  be inefficient, since it results in a small maximum movement. Instead the 
maximum has been chosen to  be ‘physically reasonable’, 0.5 A. The acceptance ratio 
is then about 0.1 but the calculation is sufficiently rapid for an adequate number of 
acceptable configurations to  be generated. Also, with this large value for the maximum 
distance moved, major rearrangements of the set of N points are possible, so escape 
from local minima in F I  can occur. 

The estimated squared fractional error on the experimental spectrum, U;, is taken 
to be independent of k and may be obtained from the counting statistics of the EXAFS 
experiment. A value of 

In using equation (5) to  calculate xs(k) we need a good calculation of the EXAFS 
due to  a single scattering atom. We have used spectra calculated using the single- 
scattering fast curved-wave theory (Gurman e l  a1 1984) by the Daresbury data  analysis 
package EXCURV88. This automatically calculates a spectrum a t  the same k values 
as appear in the experimental spectrum. We have calculated x l ( k ,  T )  a t  a range of r 
values separated by 0.1 A, corresponding to the distance values in the g ( r )  histogram. 
These were then input into the program and used in the form of a look-up table so 
that x s ( k )  could be calculated rapidly from the gs ( r )  histogram. 

(For a more detailed description of the principles and practice of the RMC method 
see McGreevy e t  a1 (1990).) 

(noise level of 1%) is appropriate for our data.  

we have a 

5. Results for amorphous and crystalline silicon 

In order to  test the RMC simulation technique on real EXAFS dat alysed 
spectra from crystalline and amorphous silicon. The amorphous silicon sample was in 
the form of a sputtered thin film. Spectra were obtained on the SRS at  SERC Daresbury 
as part of a study of amorphous silicon alloys. Details of the sample preparation and 
experiment may be found elsewhere (Bayliss and Gurman 1990). The spectra were 
fitted using the standard EXCURV88 program with the results given in table 1. For 
the analysis of amorphous silicon data our starting configuration was that of a perfect 
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Table 1. Details of EXCURVBB and RMc fits. (U) Fits using EXCURVBB; (b )  Fits using 
RMC 

c- Si a-Si 

Shell R N U 2  R N U 2  

(Af0 .02)  (10-4 A') ( h o . 0 2 )  (10-4 A2) 
~ ~~~ ~~~~ ~~ 

(a) 
1 2.33 4 f l  50 f 15 2.35 4 f l  65 f 15 
2 3.82 f 0.02 9 f 5 85 f 80 
3 4.48 f 0.02 x 12 x 100 
V, = -4  eV AFAC = 0.65 

2.35 4 25 2.35 4 25 
( b )  
1 
2 3.9 12 100 % 4.1 x 1000 
3 4.5 12 x 4.1 x 1000 
Bond angle: c-Si 109 f 3' a-Si 1 0 9 f  15' 

silicon crystal. The final configuration obtained for amorphous silicon was used as the 
starting point for the simulation of crystalline silicon. 

In the RMC simulation we used N = 1000 atoms, corresponding to a cell length L = 
27.5 A. The EXAFS was fitted out to a distance of 6 A, beyond any discernible feature 
in the Fourier transform of the experiment, and r0 was set a t  2 A. In figure l(a) we 
show the simulated gs(r) for crystalline and amorphous silicon obtained by averaging 
over five converged configurations. Figure l ( b )  shows the distance integrated g s ( r ) ;  
the fourfold coordination is apparent. Figure 2(a) compares the experimental EXAFS 
spectrum for amorphous silicon with that obtained from RMC whilst figure 2(b) shows 
the result of a fit using EXCUKV88. The quality of the two fits is very similar. We 
deliberately chose a spectrum containing an experimental 'glitch' (at  about 13 A-') 
in order to test the technique. Clearly this artefact causes no problems. 

The program was run on the CONVEX C220 a t  SERC Daresbury using an optimizing 
compiler. About 15000 total configurations, and some 1500 accepted configurations, 
could be obtained in 3 minutes of CPU time. Convergence took about 10 minutes CPU 
time for both samples and another 15 minutes was used to obtain several (usually 
5) gs(r) for averaging. These timings suggest that  the technique should be widely 
applicable. 

The radial distribution functions shown in figure l(a) demonstrate that the near- 
est neighbour shells in crystalline and amorphous silicon are almost identical, a conclu- 
sion also reached by standard EXAFS analyses (see table 1). The comparatively large 
step length prevents us from determining the mean square deviation in bond length, 
u:, with any precision but RMC gives much the same value as that obtained using EX- 
CURV88, u: = 0.005A2 corresponding to  u1 = 0.07 A. The second- and third-neighbour 
peaks clearly appear in the g ( r )  for crystalline silicon, a t  the correct distances, but 
are merged in the g(r) for amorphous silicon. The widths of the g ( r )  peaks in crys- 
talline silicon agree with those found using EXCURV88. The position and width of the 
second-neighbour peak allow us to  calculate the value of the bond angle in crystalline 
silicon and its range due to  thermal motion. We find a bond angle of 109' with a 
range of f3'. 



Reverse Monte Carlo simulation for the analysis of EXAFS data 9469 

L 
1 

n 

n IL -1 M- 
I.- , 

2 3 L 5 6 
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Figure 1. ( a )  Radial distribution functions for crystalline (full line) and amor- 
phous (broken line) silicon obtained from RMC analyses of the EXAFS data. ( b )  The 
integrated g(r) showing fourfold coordination of Si. 

Figure 3 shows the bond angle distribution calculated directly from the 1000 atoms 
in the RMC simulation. We define a bonded atom as one lying between 2.2 and 2.5 
from a given atom. We then find that 95% of the atoms are fourfold coordinated 
in both crystalline and amorphous silicon. The thermal range of the bond angle in 
crystalline silicon is apparent in figure 3.  It is also apparent that  the range of bond 
angles in amorphous silicon is very much wider, although the mean bond angle is 
unaltered a t  the tetrahedral value of 109'. The RMC range of bond angles in our 
sputtered amorphous silicon sample is 1 5 O ,  rather larger than is usually found but 
sputtered samples are known to be highly disordered. The bond angle in amorphous 
silicon could not be determined using EXCURV88 because the second-neighbour shell 
was too weak to  fit i t .  

The RMC simulation technique clearly provides a good fit to EXAFS data  from 
crystalline and amorphous silicon and gives good structural information. The simu- 
lation provides us with a picture of the amorphous material whose structure is seen 
to  be a continuous random network with a rigid bond length but much bond angle 
distortion which destroys long-range order. 
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Figure 2. 
spectra (weighted by k3) for amorphous silicon. 
standard EXCURVBB package. 

( a )  Experimental (broken curve) and RMC fitted (full curve) EXAFS 
( b )  As ( a ) ,  but fitted using the 

6. Results for silver bromide 

We have also used the RMC technique to  attempt an analysis of the EXAFS on the 
Br K edge of silver bromide. The EXAFS data,  taken at 18 and 100 K at  SERC 
Daresbury, were kindly provided by Dr D Batchelor of the University of Cambridge. 
The analysis of these spectra is continuing, but our preliminary results show some 
interesting features of the RMC simulation. 

The Br K edge EXAFS contains information on Br-Ag and Br-Br correlations 
only; Ag-Ag correlations are completely undefined. Thus a single EXAFS spectrum 
contains less information than a neutron diffraction experiment. In performing the 
RMC simulation we first tried setting the cut-off distance at  somewhat less than the 
Br-Ag nearest-neighbour distance of 2.89 A, yo = 2.3  A for all three partial radial 
distribution functions. Although the simulation converged reasonably well, and gave 
a strong peak in gBrAg(T) a t  the correct distance, there was considerable cross talk 
between the partial radial distribution functions, both gBrBr(r) and gAgAg(T) being 
about unity in the region of the nearest-neighbour peak (see figure 4). These two 
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6 ( d e d  

Figure 3. Bond angle distributions in crystalline (full line) and amorphous (broken 
line) silicon obtained from the RMC simulation. 

.- 

1L 

12 

I ,  r I ,  I I I ,  I , ,  , '  

R ( A )  
00 10 2 0  30 LO 5.0 6 0  

Figure 4. (a) Partial radial distribution functions g a P ( T )  for crystalline AgBr at 
100 K obtained from RMC simulation of EXAFS data from the bromine K edge. Full 
line: Br-Ag; broken line: Br-Br; dotted line: Ag-Ag. ( b )  Integrated g a p ( r ) .  
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distributions were flat and so gBrBr(r) did not contribute significantly to  the EXAFS. 
Clearly one EXAFS spectrum does not constrain the three partial radial distribution 

functions of a binary material sufficiently. However if we set ro = 2.3 A for gBrAg(v) 
and 3.5 A for the other two partials then we found that the cross talk was totally 
eliminated. The result of a fit to  the 100 K data is shown in figure 5. The prevention 
of close like-atom correlation and the overall density constraint suffice to define the 
system enough to  enable the single EXAFS data  set to  correctly separate the three 
partials. A similar result is found in RMC simulation of neutron diffraction data  for 
molten salts (McGreevy and Pusztai 1990). 

i t 

1.2-1 b 

- 1 2 1  f 
I I I I I I I , ,  

L 6 8 10 12 1L 16 
k ( A - ) )  

Figure 5 .  Experimental (full curve) and RMC fitted (broken curve) EXAFS spectrum 
(weighted by 1;’) from the Br I< edge in AgBr at 100 K. 

In order to  improve the analysis of the structure of materials cont,aining more than 
one type of atom we should fit EXAFS data  from the absorption edges of several types 
of atom simultaneously. We are a t  present engaged in developing the program to do 
this for binary materials. 

7. Conclusions 

We have described the application of the reverse Monte Carlo simulation technique 
to the analysis of ExAFS data.  The algorithm is simple and we have shown that it 
is sufficiently fast t o  be widely applicable. The chief advantage of the technique lies 
in its lack of assumptions about the shape of the radial distirbution functions. We 
therefore expect it to be most widely used in those situations where the assumptions 
of standard EXAFS theory, particularly the Gaussian shape of the peaks in the radial 
distribution function, are but poorly obeyed. Two clear examples are the structures of 
metallic glasses and molten materials (McGreevy and Pusztai 1990). The sequential 
nature of the fitting process in RMC suggests that it will also be useful in analysing 
data taken sequentially. Examples of this might be the so-called quick EXAFS method 
(Frahm 1989) or in following a material through the melting point (Orton 1990). We 
are still developing the program and intend to report applications of RMC to  these 
systems in due course. Another advantage of the technique is the ability to combine 
EXAFS and other experimental data,  e.g. neutron and x-ray diffraction. This should 
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prove useful for investigating amorphous materials, particularly those with complex 
chemical compositions. 

References 

Bayliss S C and Gurman S J 1990 J .  Non-Cryst. Solids at  press 
Frahm R 1989 Rev. Sci. Instrum. 60 2515 
Greaves G N,  Gurman S J, Gladden L F, Spence C A,  Cox P, Sales B C, Boatner L A and Jenkins 

Gurman S J 1990 Synchrotron Radiation and Biophysics ed S S Hasnain (Chichester: Ellis- 

Gurman S J, Binsted N and Ross I 1984 J .  Phys. C: Solid State Phys. 17 143 
Hayes T M and Boyce J B 1982 Solid State Physics vol 37 (New York: Academic) p173 
Keen D A and McGreevy R L 1990 Nature 344 423 
Koningsberger D C and Prins R (ed) 1988 X-ray Absorption (Chichester: Wiley) 
McGreevy R L, Howe M A ,  Keen D A and Clausen K N 1990 Neutron Scattering Data Analysis 

McGreevy R L and Pusztai L 1988 Mol. Simul. 1 359 
__ 1990 PTOC. R. Soc. A in press 
Orton B R 1990 Neutron and X-ray Scattering (IOP Conference Series 101)  ed M C Fairbanks, A 

R N 1988 Phil. Mag. B 58 271 

Horwood) ch 1 

(IOP Conference Series) ed M W Johnson (Bristol: IOP Publishing) in press 

N North and R J Newport (Bristol: IOP Publishing) p 77 


